首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11107篇
  免费   1739篇
  国内免费   2278篇
化学   10688篇
晶体学   122篇
力学   157篇
综合类   99篇
数学   28篇
物理学   4030篇
  2024年   13篇
  2023年   142篇
  2022年   264篇
  2021年   427篇
  2020年   670篇
  2019年   470篇
  2018年   429篇
  2017年   435篇
  2016年   623篇
  2015年   508篇
  2014年   600篇
  2013年   1029篇
  2012年   796篇
  2011年   706篇
  2010年   534篇
  2009年   697篇
  2008年   663篇
  2007年   707篇
  2006年   701篇
  2005年   609篇
  2004年   588篇
  2003年   497篇
  2002年   478篇
  2001年   334篇
  2000年   319篇
  1999年   249篇
  1998年   201篇
  1997年   204篇
  1996年   157篇
  1995年   161篇
  1994年   122篇
  1993年   128篇
  1992年   123篇
  1991年   81篇
  1990年   63篇
  1989年   56篇
  1988年   63篇
  1987年   37篇
  1986年   31篇
  1985年   21篇
  1984年   21篇
  1983年   17篇
  1982年   20篇
  1981年   12篇
  1980年   24篇
  1979年   18篇
  1978年   20篇
  1977年   13篇
  1976年   20篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
《中国化学快报》2020,31(12):3209-3212
Constructing a reliable and favorable electrode-electrolyte interface is crucial to utilize the exceptional energy storage capability in commercial lithium-ion batteries. Here, we report a facile synthesis approach for the lithium difluorophosphate (LiPO2F2) solution as an effective film-forming additive via direct adding the Li2CO3 into LiPF6 solution at 45 °C. Benefiting from the significantly reduced interface resistance (RSEI) and charge transfer impedance (Rct) of both the cathode and anode by adding the prepared LiPO2F2 solution into a baseline electrolyte, the cycling performance of the graphite||LiNi0.5Mn0.3Co0.2O2 pouch cell is remarkably improved under all-climate condition.  相似文献   
22.
The reaction thermodynamics of the 1,2‐dimethoxyethane (DME), a model solvent molecule commonly used in electrolytes for Li?O2 rechargeable batteries, has been studied by first‐principles methods to predict its degradation processes in highly oxidizing environments. In particular, the reactivity of DME towards the superoxide anion O2? in oxygen‐poor or oxygen‐rich environments is studied by density functional calculations. Solvation effects are considered by employing a self‐consistent reaction field in a continuum solvation model. The degradation of DME occurs through competitive thermodynamically driven reaction paths that end with the formation of partially oxidized final products such as formaldehyde and methoxyethene in oxygen‐poor environments and methyl oxalate, methyl formate, 1‐formate methyl acetate, methoxy ethanoic methanoic anhydride, and ethylene glycol diformate in oxygen‐rich environments. This chemical reactivity indirectly behaves as an electroactive parasitic process and therefore wastes part of the charge exchanged in Li?O2 cells upon discharge. This study is the first complete rationale to be reported about the degradation chemistry of DME due to direct interaction with O2?/O2 molecules. These findings pave the way for a rational development of new solvent molecules for Li?O2 electrolytes.  相似文献   
23.
24.
A new type of CuII ion sorbents is presented. These are obtained by CaCO3 mineralization from supersaturated solutions on gel‐like cross‐linked polymeric beads as insoluble templates. A divinylbenzene–ethylacrylate–acrylonitrile cross‐linked copolymer functionalized with weakly acidic, basic, or amphoteric functional groups has been used, as well as different initial inorganic concentrations and addition procedures for CaCO3 crystal growth. The morphology of the new composites was investigated by SEM and compared to that of the unmodified beads, and the polymorph content was established by X‐ray diffraction. The beads, before and after CaCO3 mineralization, were tested as sorbents for CuII ions. The newly formed patterns on the bead surface after CuII sorption were observed by SEM, and the elemental distribution on the composites and the chemical structure of crystals after interaction with CuII were investigated by EDAX elemental mapping and by FTIR‐ATR spectroscopy, respectively. The sorption capacity increased significantly after CaCO3 crystals growth on the weak anionic bead surface (up to 1041.5 mg CuII/g sample) compared to that of unmodified beads (491.5 mg CuII/g sample).  相似文献   
25.
A unique sodium sulfide (Na2S) cathode is developed, which will allow the use of sodium‐free anodes for room‐temperature sodium–sulfur (Na–S) batteries. To overcome the “inert” nature of the Na2S, a special cathode structure is developed by spreading the multi‐walled carbon nanotube (MWCNT)‐wrapped Na2S particles onto MWCNT fabrics. Spectroscopic and electrochemical analyses reveal a series of polysulfide intermediates involved in the charge/discharge of the cell. The Na–S battery prepared in full discharge state with the Na2S/MWCNT cathode provides a remarkable capacity of 500 A h kg?1 (based on sulfur mass) after 50 cycles.  相似文献   
26.
Lithium–sulfur batteries are among the most promising electrochemical energy storage devices of the near future. Especially the low price and abundant availability of sulfur as the cathode material and the high theoretical capacity in comparison to state‐of‐the art lithium‐ion technologies are attractive features. Despite significant research achievements that have been made over the last years, fundamental (electro‐) chemical questions still remain unanswered. This review addresses ten crucial questions associated with lithium–sulfur batteries and critically evaluates current research with respect to them. The sulfur–carbon composite cathode is a particular focus, but its complex interplay with other hardware components in the cell, such as the electrolyte and the anode, necessitates a critical discussion of other cell components. Modern in situ characterisation methods are ideally suited to illuminate the role of each component. This article does not pretend to summarise all recently published data, but instead is a critical overview over lithium–sulfur batteries based on recent research findings.  相似文献   
27.
Polytheonamide B ( 1 ) is a natural peptide that displays potent cytotoxicity against P388 mouse leukemia cells (IC50=0.098 nm ). Linear 48‐mer 1 is known to form monovalent cation channels on binding to lipid bilayers. We previously developed a fully synthetic route to 1 , and then achieved the design and synthesis of a structurally simplified analogue of 1 , namely, dansylated polytheonamide mimic 2 . Although the synthetically more accessible 2 was found to emulate the channel function of 1 , its cytotoxicity was decreased 120‐fold. Herein, the chemical preparation and biological evaluation of seven analogues 3 – 9 of 2 are reported. Compounds 3 – 9 were modified at their N terminus and/or the side chain of residue 44 of 2 to alter their physicochemical properties. The total synthesis of 3 – 9 was accomplished in a unified fashion by a combination of solid‐phase and solution‐phase chemistry. Systematic evaluation of the hydrophobicities, single‐channel currents, ion‐exchange activities, and cytotoxicities of 3 – 9 revealed that their hydrophobicities are correlated with the total magnitude of ion exchange and determine their cytotoxic potency. Consequently, the most hydrophobic analogue 9 exhibited the lowest IC50 value, which is comparable to that of 1 . Therefore, these results clarified that the bioactivity of the polytheonamide‐based peptides can be rationally controlled by changing their hydrophobicity at the N and C termini of the 48‐amino‐acid sequence.  相似文献   
28.
A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres‐doped three‐dimensional (3D) graphene aerogel has been fabricated by a one‐pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5–10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate‐like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long‐term stability of 634 mA h g?1 over 1000 cycles at a high current density of 6 A g?1 (7 C), and an excellent rate capability of 413 mA h g?1 at 10 A g?1 (11 C), thus exhibiting great potential as an anode composite structure for durable high‐rate lithium‐ion batteries.  相似文献   
29.
195Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3)n(OH)6 ? n]2?, [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 1–6), and [Pt(NO3)6 ? n ? m(OH)m(OH2)n]?2 + n ? m formed by dissolution of platinic acid, H2[Pt(OH)6], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge‐including atomic orbitals (GIAO)‐PBE0/segmented all‐electron relativistically contracted–zeroth‐order regular approximation (SARC–ZORA)(Pt) ∪ 6–31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second‐order polynomial plots of δcalcd(195Pt) versus δexptl(195Pt) chemical shifts and δcalcd(195Pt) versus the natural atomic charge QPt are obtained. Despite of neglecting relativistic and spin orbit effects the good agreement of the calculated δ 195Pt chemical shifts with experimental values is probably because of the fact that the contribution of relativistic and spin orbit effects to computed σiso 195Pt magnetic shielding of Pt(IV) coordination compounds is effectively cancelled in the computed δ 195Pt chemical shifts, because the relativistic corrections are expected to be similar in the complexes and the proper reference standard used. To probe the counter‐ion effects on the 195Pt NMR chemical shifts of the anionic [Pt(NO3)n(OH)6 ? n]2? and cationic [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 0–3) complexes we calculated the 195Pt NMR chemical shifts of the neutral (PyH)2[Pt(NO3)n(OH)6 ? n] (n = 1–6; PyH = pyridinium cation, C5H5NH+) and [Pt(NO3)n(H2O)6 ? n](NO3)4 ? n (n = 0–3) complexes. Counter‐anion effects are very important for the accurate prediction of the 195Pt NMR chemical shifts of the cationic [Pt(NO3)n(OH2)6 ? n]4 ? n complexes, while counter‐cation effects are less important for the anionic [Pt(NO3)n(OH)6 ? n]2? complexes. The simple computational protocol is easily implemented even by synthetic chemists in platinum coordination chemistry that dispose limited software availability, or locally existing routines and knowhow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
30.
《中国化学快报》2020,31(9):2254-2258
In the work, we successfully explore a two-step hydrothermal method for scalable synthesis of the hybrid sodium titanate (NaTi8O13/NaTiO2) nanoribbons well in-situ formed on the multi-layered MXene Ti3C2 (designed as NTO/Ti3C2). Benefiting from the inherent structural and componential superiorities, the resulted NTO/Ti3C2 composite exhibits long-duration cycling stability and superior rate behaviors when evaluated as a hybrid anode for advanced SIBs, which delivers a reversible and stable capacity of ∼82 mAh/g even after 1900 cycles at 2000 mA/g for SIBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号